de Bruijn Arrays for L-Fillings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transposing Arrays on Multicomputers Using de Bruijn Sequences

Transposing an N × N array that is distributed rowor column-wise across P = N processors is a fundamental communication task that requires time-consuming interprocessor communication. It is the underlying communication task for the fast Fourier transform of long sequences and multi-dimensional arrays. It is also the key communication task for certain weather and climate models. A parallel trans...

متن کامل

De Bruijn Graph Homomorphisms and Recursive De Bruijn Sequences

This paper presents a method to find new de Bruijn cycles based on ones of lesser order. This is done by mapping a de Bruijn cycle to several vertex disjoint cycles in a de Bruijn digraph of higher order and connecting these cycles into one full cycle. We characterize homomorphisms between de Bruijn digraphs of different orders that allow this construction. These maps generalize the well-known ...

متن کامل

De Bruijn Sequences Revisited

A (non-circular) de Bruijn sequence w of order n is a word such that every word of length n appears exactly once in w as a factor. In this paper, we generalize the concept to different settings: the multi-shift de Bruijn sequence and the pseudo de Bruijn sequence. An m-shift de Bruijn sequence of order n is a word such that every word of length n appears exactly once in w as a factor that start...

متن کامل

Generalized de Bruijn Cycles

For a set of integers I, we define a q-ary I-cycle to be an assignment of the symbols 1 through q to the integers modulo qn so that every word appears on some translate of I. This definition generalizes that of de Bruijn cycles, and opens up a multitude of questions. We address the existence of such cycles, discuss “reduced” cycles (ones in which the all-zeroes string need not appear), and prov...

متن کامل

The De Bruijn Factor

We study de Bruijn’s ‘loss factor’ between the size of an ordinary mathematical exposition and its full formal translation inside a computer. This factor is determined by a combination of the amount of detail present in the original text and the expressivity of the system used to do the formalization. For three specific examples this factor turns out to be approximately equal to four.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics Magazine

سال: 2014

ISSN: 0025-570X,1930-0980

DOI: 10.4169/math.mag.87.1.57